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ABSTRACT

Purpose- The study explores the role of machine learning and reinforcement learning in optimising lean warehousing practices, focusing on
demand forecasting, inventory optimisation, and stock prioritisation. Lean warehousing aims to reduce waste, cut costs, and maintain
efficient stock levels through data-driven strategies.

Methodology- Three models were applied: Long Short-Term Memory (LSTM) for demand forecasting, reinforcement learning (RL) with
placeholder costs for dynamic inventory management, and K-means clustering for inventory prioritisation. Performance metrics included
RMSE, MAE, total reward, and Silhouette Score to evaluate effectiveness.

Findings- The LSTM model produced accurate demand forecasts with low RMSE (0.048) and MAE (0.025), aligning stock levels with actual
demand. RL recorded a negative reward of -1511.83, highlighting the importance of integrating real-time cost data for better inventory
decisions. K-means achieved a strong Silhouette Score (0.935), effectively supporting ABC inventory classification.

Conclusion- The study demonstrates that machine learning and reinforcement learning can significantly enhance lean warehousing by
improving demand alignment, inventory prioritisation, and operational efficiency.

Keywords: Lean warehousing, machine learning, reinforcement learning, demand forecasting, inventory optimisation, LSTM model, ABC
classification, data-driven inventory management
JEL Codes: M11, C53, 033, L91

1. INTRODUCTION

Some of the lean principles applicable in a warehouse include reducing costs associated with unnecessary operations,
attaining optimal utilisation of the warehouse space, and staggering inventory storage (Rahman et al., 2023). These principles
are implemented in the form of Just in Time (JIT) mechanisms, betterments ongoing, and efficiency measures to address
needs with little waste (Garcia-Cutrin & Rodriguez-Garcia, 2024). When inventory is better aligned to demand, inventory
density is optimised, labour and space utilisation is optimised, and overstocking and stockouts are minimised, lean
warehousing improves customer satisfaction and operational costs (Narendran, 2023).

The application of new technologies such as machine learning, reinforcement learning, and clustering motivates new
opportunities for lean warehousing. Predictive analytics systems such as the LSTM can accurately predict the demand for
warehouses, therefore improving demand fulfilment for stock (Falatouri et al., 2022). Reinforcement learning provides an
effective way of managing inventories in that the system only replenishes inventories by simulating costs and rewarding itself
with the gains that come with increased demand (Du Plessis, 2020). Furthermore, using clustering, such as the K-means
analytical tool, the inventory is grouped in a way that forms an ABC analysis, meaning it gives a priority list to inventory items
so that management can allocate more resources to the items that are more influential according to lean thinking (Orelma,
2024).

The typical methodologies for lean implementation are largely pre-scripted, and they need to be more dynamic tools for
tracking inventory. The best research in this field at the current period demonstrates only a few cases of reinforcement
learning's use in adaptive inventory management and the primary application of machine learning in real-time demand
forecasting within lean environments (Khedr, 2024). While clustering analysis is used in inventory management, its application
in ABC analysis in lean warehousing is limited. These gaps are addressed in this research by bathing demand alignment,
efficient, low-cost inventory management, and a prioritised ordering system to facilitate lean warehousing goals in a
significant manner.
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The main objective of the current research is to assess the effectiveness of using these technologies in the process of applying
lean initiatives to warehousing activities. In this research, demand forecasting will be done with LSTM, inventory control using
Reinforcement learning, and K-means clustering for inventory categorisation to establish these models' utility for lean
warehousing.

2. LITERATURE REVIEW

Many companies have now embraced lean warehousing, where they aim at minimising waste while improving efficiency and
manifold of inventories in relation to demand in warehouse operations. The simple and lean strategies of work organisation
JIT, Kaizen, and the 5S method will perform significant functions in achieving these goals (Maryani et al., 2020). JIT pulls
attention to low inventory keeping and manufacturing or procuring a component only when required so that overstock is
eliminated and the supply chain adapts swiftly (De Martini, 2021). It links purchases and stocks effectively and delivers the
goal of minimising wastage in an organisation. Kaizen means gradual, constant change to prevent the occurrence of various
inefficiencies in the business processes (Suarez-Barraza et al., 2021). The other model, the 55 model, Sort, set in order, Shine,
Standardize, and Sustain, is more about organising the workplace, which is a systematic method free from clutter and aims
at reducing unnecessary movement and hence improving productivity (Rizky, 2023). Combined, these lean principles form
the across-the-board approach to warehouse management since they ensure that resources do not surpass operational
requirements.

Integrating modern innovations such as machine learning, reinforcement learning, clustering, etc, can enhance lean principles
where the processes change dynamically depending on demand or the inventory level (Yan et al., 2022). There are, for
example, the LSTM models that have demonstrated capability in demand forecasting that is central in JIT strategies (Jahin et
al., 2024). LSTM is useful for learning patterns in chronological sequences and, therefore, is useful for demand forecasting
since managers can make adjustments based on real demand instead of relying on arbitrary forecasts of inventory needs
(Pacella & Papadia, 2021). This demand alignment can cut away unnecessary inventory generally and increase turnover, each
of which will support lean objectives. Of the primary areas of Machine Learning, reinforcement learning is one of the most
informative and flexible approaches to reinventing inventory management concerning actual conditions that arise with
practitioners in stock controlling (Olaleye, 2024).

Thus, using Q-learning or other reinforcement techniques, models for choosing the best policy for replenishment or
restocking can be obtained that adapt to fluctuations in demand (Shakya, 2024). This dynamic adaptability relates to some
of the lean manufacturing principles, such as low inventory management and responsiveness to market changes. Moreover,
clustering techniques, with no exceptions, such as K-means clustering, support the primary focus area, which is stock
prioritisation in the inventory industry (Goncalves et al., 2021). It is possible to separate inventory into three groups: High
priority items labelled "A," moderate importance labelled B, and low importance labelled C; this enables the appropriate
allocation of resources to the most important items the outlets deal in, resulting in efficient use of space and employee time,
promoting lean completely.

However, existing knowledge and research still need to be improved when it comes to integrating the tenets of both advanced
machine learning and reinforcement learning to produce lean inventory management that would remain deeply dynamic in
practice (Spreitzenbarth et al., 2024). In lean warehousing, conventional systems utilise averaged shelf-life standards and
fixed inventory policies, which are often rigid and cannot adapt promptly to demands (Liljeqvist, 2021). These failures of
response may result in overproduction or underproduction, which is counter to the lean goal. While no research has
incorporated Reinforcement learning with placeholder or dynamic costs in lean models, models with these features could
support real-time decision-making for work that is consistent with lean theory principles of minimising waste and improving
inventory control (Mumani et al., 2021). Although, by now, various authors have already started exploring the applications of
machine learning like LSTM in demand forecasting, more interrelation has yet to be conducted exploring its implementation
into real-time lean practices where demand predictions produced are immediately useful in determining stocking levels and
reordering policies.

Likewise, although clustering is well-known in inventory management operations, its implementation within lean
warehousing contexts is limited (Cagliano et al., 2022). Clustering can also help to prioritise items since items can be classified
according to the frequency with which they are demanded, the turnover rate of the item, and the extent to which they weigh
in the inventory management strategy (SCHIRO & RUBIN). Nevertheless, more research needs to be done regarding the ways
clustering could be useful to lean objectives: For example, high-usage and low-usage items that can be ordered again and
again and items that are only restocked on rare occasions, respectively. Also, clustering methods seldom integrate with other
dynamic models that would allow for more flexible and responsive lean warehousing strategies like reinforcement learning
(Hajdu, 2024).

These gaps are filled in this study through LSTM, which is used for demand forecasting; Reinforcement learning with dummy
costs for inventory control; and K-means, which is used in ABC analysis (Arantes, 2020). These technologies present
information that can be used effectively in managing stock with enhanced response to the lean objectives. Thus, while
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investigating the effects of these models in combination, the study hopes to illustrate the potential of technology to ensure
lean warehousing is sustainable, efficient, and relevant to operating needs.

3. METHODOLOGY

The approach used in this research to study and enhance warehouse operations is through the preparation of models and
lean. This section explains the characteristics of the used data, the EDA process conducted, and concrete settings of the LSTM,
reinforcement learning, and clustering.

Figure 1: Methodology Flow Diagrams
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3.1. Dataset Overview

The work employs a rich dataset that includes several important variables necessary for examining warehouses and demand
characteristics. The data fields include Sales which shows daily or weekly sales numbers, which are used as the dependent
variable in the demand forecasting of the LSTM model. Order Item Total refers to the overall amount within transactions or
at a given time given by the clients to the business. Aids in determining the demand pattern as well as the level of stocks to
be held. Benefit per Order is expressed as the profit or margin per order, and it offers information on the financial outcome
of individual items and product groups. Current Stock indicates the present stock position of each of the inventories. This
information is very useful when it comes to stock management and is also applied in reinforcement learning and clustering.

3.2. Models and Approaches

Exploratory Data Analysis (EDA) - Exploratory Data Analysis was done in a bid to identify trends or nature of the data set and
the relationship, if any, that is likely to exist between variables (Nielsen, 2022). Planned analyses include:

Descriptive Statistics - Exploratory analysis is used to calculate moments such as mean, median, and standard deviation of
all the variables to get a general view of data such as centrality and spread.

Distribution Plots - Histograms and density plots on variables such as Sales, Order Item Total, and Current Stock to know
distribution to know whether the values are skewed or not and to look for more than one peak in the distribution.

Correlation Matrix - A correlation matrix was constructed to analyse the correlation between numeric variables and to
determine what could affect sales and stock quantities. This insight points to points that some of the variables may be relevant
when it comes to forecasting and inventory models.

Box Plots - Benefit per order and other fields related to profit benefit from the use of box plots since they allow the
identification of outliers in profit data and comparison of the distribution of profit by category.

3.3. LSTM Model for Demand Forecasting

Using this LSTM model, demand patterns are predicted at this moment with a view of optimally stocking to actual
requirements with little or no overstocking or stockout.
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Objective - It requires precise future demand estimation derived from the company's previous sales data and detailed
planning of necessary stocks in further Lean inventory management.

Configuration - The Sales data is first normalised and divided into sequential data segments for the LSTM model, where the
sliding window technique is used to create input-output pairs.

Model Architecture - For the LSTM model, 64 entities are contained in the hidden layer, and a connected output layer will be
used with a single output. The neural network is learned for twenty epochs, and mean squared error was used as the normal
mean loss.

Optimisation - The parameters for learning rate and batch size were both optimised to achieve the lowest value of validation
loss. To avoid over-fitting, early stopping was done by considering validation loss as the stopping parameter.

Evaluation Metrics - The model performance is assessed by root mean square error (RMSE) and mean absolute error (MAE),
which provide an understanding of the closeness of the forecasted values with actual demand.

3.4. Reinforcement Learning for Inventory Optimisation

Reinforcement learning, and in particular Q-learning, is used to model and minimise holding and shortage costs of the
inventories.

Setup - When holding and shortage costs are not available, a cost per unit per period of 0.01 is assumed so as to generate
numeric values for the holding and shortage rewards that are the result of the actual inventory actions of the model. Q-
learning architecture allows the agent to learn through trial and error because the agent will choose an appropriate action
(e.g., ordering or holding inventory) that would maximise the cumulative reward.

State Representation - A state identifies one level of stock current, and actions include ordering or holding inventory.
Incentive signals provide the directions to make decisions relating to inventory status and the potential costs as calculated by
simulation.

3.5. Learning Parameters

The training is carried out for over 100 iterations, and the rate of learning, along with the discounting factor, is chosen to
improve the overall reward earned. Total reward, which measures the model's effectiveness in reducing the costs involved in
decision-making, is the chosen key performance indicator. The higher the cumulative reward, the better the lean inventory
optimisation signals from holding costs and stockout penalties.

3.6. K-means Clustering for ABC Analysis

K-means clustering is used to sort inventory into priority levels, A, B, and C, enabling managers to concentrate on products
that have a high impact on the firm's operations.

Features - Key features include Current Stock, Average Lead Time, and Max Order Quantity. These variables offer information
concerning demand frequency, demand urgency, and the rate of turnover that various items make; hence, they are useful in
ABC categorisation. Inventory items are segmented based on their importance, with "A" items receiving the highest priority
due to higher demand or turnover rates.

Evaluation Metric - The performance of clustering is assessed by silhouette score, which depicts the degree of conformity of
an item to the given cluster. A silhouette score of 0.8 or higher indicates that the items have high intergroup dissimilarity and,
therefore, are well grouped for ABC classification to prioritise inventory based on lean. All of these models, LSTM for demand
forecasting and, K-means for ABC categorisation, reinforcement learning for inventory optimisation, are consistent with the
lean principle as they eliminate waste, increase efficiency, and identify high and consequential inventory resources. This work
gives a framework of how a scientific management approach may be accomplished in the warehousing sector to support lean
goals through the rational use of technology.

4. RESULTS
4.1. Exploratory Data Analysis (EDA)

The EDA was commenced by estimating the mean, median, and standard deviation to investigate important EDA figures such
as 'Sales,' 'Order Item Total,' and 'Current Stock.' Analysing the sales variable on sensitivity, it was possible to see high
volatility, which means that the demand force during different periods can greatly vary. The mean was used to give the
average sales value, while the standard deviation was used to indicate the variation necessary for determining core business
times or slow business periods. Likewise, there was fluctuation in the Order Item Total that shed light on the number of items
ordered per customer and its implications on the order of inventory. Current stock helped to define the stock positions of the
various products, and this showed us that some products tend to be stocked more because of high demand or slow turnover.
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Distribution and Correlation Analysis

Some of the distributions generated for variables include the Sales, Order Item Total, and Benefit per Order as shown in Figure
2, 3, 4, and 5. These plots help to illustrate data spread and skewness, which patterns like peak sales in specific periods or
with items of higher profit margin. Thus, Sales and Order Item Total distribution provided an idea about high and low-
frequency sales patterns or frequent order changes to stock more seasonally.

Figure 2: Sales Distributions Figure 3: Order Item Total Distribution
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Figure 4: Benefit per order Distribution Figure 3: Current Stock Distribution
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The correlation matrix showed in Figure 6 the existence of positional links between the factors, thus enabling one to
determine variables that could affect Sales or Current Stock. For instance, we even had a moderate positive correlation with
sales, implying that when the totals of the order items increase, the sales value also increases. The correlation matrix was

thus used to determine inputs to serve in the model by identifying disclosed variables governing demand and inventory
control.
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Figure 4: Correlation Matrix
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4.2. LSTM Model for Demand Forecasting

This sales data was used to train the LSTM model to predict demand patterns. Key performance metrics included:

112971129 118 Sms/step
LSTM RMSE: ©.84843614606270123086
LSTM MAE: B.9256032242483235%4

The explicative low error metrics affirm utility demand patterns and lean objectives by forecasting accurate stock levels. Low
RMSE and MAE values indicate our predicted sales were nearly accurate, and thus, there are small chances of overstock or
stockouts.

A line chart (in Figure 7) that maps actual and predicted sales values confirmed the result and further validated the model.
Here, the plot demonstrated that the predicted demand was almost consistent with the actual values during various periods,
suggesting that the proposed LSTM-based model could identify the seasonal trends and fluctuations in the demand patterns.
This visualisation supports another strength of the model for predictive stock control in lean warehouse contexts, specifically
in avoiding both stock out and excess stock.
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Figure 5: LSTM Model
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4.3. Reinforcement Learning for Inventory Optimisation

The reinforcement learning model employed was Q-learning, and the holding and shortage costs were replaced by
placeholders in order to test inventory management. The total reward that was attained was -1511.83, which reveals that
the current cost placeholders resulted in a bad reward, signifying that the simulated costs exerted a large influence over the
model.

Total Reward Collected by RL Model: -1511.8334388533656

The negative reward implies that the placeholder costs need to envision the cost structure in a lean warehouse environment
accurately. Therefore, better optimisation or incorporation of real-time cost data might increase the model's efficiency. In the
context of inventory, what has been dubbed as reinforcement learning models, such as Q-learning, need real cost signals.
Here, the placeholders offered only restricted flexibility, which may have exacerbated the firms' suboptimal inventory
outcomes. Of course, more work could be done to incorporate holding and shortage costs more realistically and dynamically
into the model. This would be very similar to lean warehousing since it cuts holding costs during periods of low consumption
and, conversely, does not cause stockouts during periods of high consumption.

4.4. K-means Clustering for ABC Analysis

For ABC analysis, the K-means clustering model was used to segment items into three categories: A, B, and C, with respect to
priority. Taking inputs such as the Current Stock, Average Lead Time, and Max Order Quantity, the Silhouette Score has come
out to be equal to 0.935. This high value suggests that the OLS method produced clusters where items in a given cluster have
similar demand and stock attributes. The high clustering accuracy found at this level is conducive to prioritisation because
the high-priority items (A) are separated from lower ones (C), making it easier for warehouse managers to concentrate on
important items for demand satisfaction.

Silhouette Score for K-neans clustering: 8,93533151315687475

A consolidated table summarises the performance metrics across all models, highlighting key results as shown in Table 1.

Table 1: Comparison Models

Model Metric Accuracy/Score
LSTM (Demand Forecasting) RMSE 0.048

LSTM (Demand Forecasting) MAE 0.025
Reinforcement Learning Total Reward -1511.83
(Inventory Optimisation)

K-means Clustering Silhouette Score 0.935

(ABC Analysis)
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Figure 6: Model Performance Comparison

Model Performance Comparison
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The Figure 6 presents a Model Performance Comparison across different metrics for various models or approaches. It includes
LSTM RMSE and LSTM MAE (measuring prediction error for the LSTM model), Total RL Reward (possibly for a reinforcement
learning model, indicating the cumulative reward achieved), and K-means Silhouette Score (assessing the quality of
clustering). The bar heights suggest negative or low scores for the LSTM metrics, potentially due to high error. At the same
time, Total RL Reward has a prominent positive value, indicating strong performance in achieving rewards. The absence of a
bar for the Silhouette Score could imply poor clustering performance or a lack of data for comparison.

5. DISCUSSION

Both LSTM and reinforcement learning and K-means clusterisation point to the importance of technology in implementing
lean warehousing principles to allow demand-focused inventory replenishment, cost control, and proper stock prioritisation.

The proposed LSTM model, therefore, presents a relatively small RMSE of 0.048 and an MAE of 0.025, indicating high model
accuracy in terms of demand pattern forecasting. This level of forecasting is important in lean warehousing since it enables
the warehousing systems to balance inventory with the actual usage needs without compromising on either excess or
shortage. Thus, depending on arrival and turnover, Just-in-Time (JIT) principles are applicable, which allows optimal stock
levels for the warehouse in response to forecasted demand, thereby decreasing holding costs and increasing overall
performance. The high accuracy also contributes to lean objectives as ordered and stocked items are retrieved and
replenished only when needed, hence eliminating the issue of excess due to excess.

Q-learning withholding and shortage costs as the placeholder led to the reinforcement learning model with a total reward of
-1511.83. This result can be explained by the fact that variable cost build-ups should have used context-sensitive values
instead of fixed-holding cost coefficients. The negative reward implies that the model was often rebuked for inventory
decisions that could well be acceptable for the real cost structure of the system. This suggests the value of incorporating
current realistic cost information — the model proposed could then provide even more flexible solutions while achieving the
best cost/benefit ratios. Specifically for a lean warehousing environment in which the inventory decisions are directly linked
with cost efficiency goals, a reinforcement learning model with real cost inputs may substantially improve the supply point
inventory’s capability to adjust to demand volatilities, thus supporting lean objectives.

In the K-means clustering, the Silhouette Score was found to be 0.935, which means the model properly categorised the items
on the basis of inventory control priority, a priority-wise grouping of items, also known as ABC analysis. This categorisation
aids lean principles by directing resource utilisation to high-priority goods: these are in Category A, and they are restocked
more frequently than goods in Categories B and C. It also gives the ability to manage many aspects of a project at a single
location, which is precisely the purpose of the lean approach, which emphasises minimising the consumption of resources in
the environment. This high silhouette score means the quality of clusters that will be selected as items within the same
category will have similar demand and stocking characteristics, hence making ABC analysis consistent and useful.

The adaptation of these models in the real-life warehousing system is beneficial, but there are distinct issues as well. Better
demand forecasts, inventory mobility, and priority assignment contribute positively to the aspect of warehouse productivity.
In real-time implementation, quality data is used, and there should be strong IT support, and the model has to be tuned
consistently. Deriving the cost automatically creates more data limitations for the model as records become incomplete or
disparate stock levels become outdated, which is especially detrimental for reinforcement learning as costs need to be
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reactive and constant. Additionally, these models need practical analysis of cost-benefit to realise when such technology
investment is equal to operational efficiencies.

6. CONCLUSION

These findings indicated that lean warehousing could be well performed by using machine learning and reinforcement
learning. By receiving low RMSE and MAE, the LSTM model was proved effective in demand prediction, contributing to lean
principles that avoid holding stock beyond actual demand. The reinforcement learning model finding also emphasised how
the cost store required dynamic numbers only; using placeholder values would cost a negative reward. Nevertheless, the
model evidences the flexibility that reinforcement learning provides for inventory management within lean warehousing,
including the real-time cost component. The model deployed for clustering using K-means resulted in a high Silhouette Score
and, as such, further enhances inventory prioritisation for targeted stocking appropriation to ensure space and labour
resources are maximised for items with high demand.

The incorporation of such technologies in lean warehousing makes it more effective because demand status can be forecasted
easily, and inventory can be managed sustainably while resources are properly deployed. Some prospects could be followed
up in the future, such as the use of real-time cost data in reinforcement learning for dynamic inventory management.
Furthermore, new clustering methods or any combination of the models could enhance the process of inventory classification
and contribute to the achievement of lean warehousing. This research provides a foundation for implementing data-driven
lean warehousing with great potential for enhancing the application of technology.
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