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ABSTRACT 
Purpose- This study investigates the empirical effects of information dissemination dynamics across active trading sessions and market 
closures on Chinese stock market volatility. 
Methodology- This paper uses intraday data to explore the influences of information transmission during trading and non-trading periods 
(including lunch breaks that divide each trading day into two distinct sessions) on volatility in China’s stock markets, and to forecast such 
volatility through modelling.  
Findings- Its findings demonstrate that absolute overnight return and positive lunch break return both play important roles in future 
volatility. Moreover, the empirical results suggest that morning-session RRV is positively linked with volatility over longer prediction 
horizons, and afternoon-session RRV, with volatility over shorter ones.  
Conclusion- Finally, this paper proposes that a simplified model, which only considers morning-session RRV, can improve the accuracy of 
prediction of future realized volatility. 
 
Keywords: Overnight returns, trading volume, lunch break returns, morning and afternoon sessions, realized range-based volatility. 
JEL Codes: C32, C51, G10 

1. INTRODUCTION 

The process of information transmission is the main reason for price fluctuation in stock markets. The sequential information 
arrival (SIA) hypothesis, originally proposed by Copeland (1976) and extended by Jennings et al. (1981), holds that the new 
information received by traders arrives in a sequential, random fashion, and assumes that there will be intermediate 
equilibria en route to a final state of equilibrium. Subsequently, Andersen (1996) both suggested that trading volume can 
serve as a proxy measure of the unobservable amount of information that flows into the market. Darrat et al. (2003) 
supported the SIA hypothesis, on the grounds that trading volume and return volatility followed a clear lead-lag pattern in a 
large number of the Dow Jones Industrial Average stocks. 

However, information transmission in non-trading periods will also cause changes in stock prices, especially opening ones. 
In particular, overnight returns are often regarded as an information-transmission variable. Gallo (2001) demonstrated the 
explanatory power of overnight returns over the squared residuals of intra-day returns and also found that the former 
provided a better fit for conditional-variance estimates. Ahoniemi and Lanne (2013) found that a realized volatility estimator 
that optimally incorporates overnight information is more accurate in-sample for the S&P 500 index. Todorova and Souček 
(2014) showed that considering overnight information separately, rather than adding it to daily realized-volatility estimates, 
consistently led to better out-of-sample results despite the higher number of parameters involved. And some prior studies 
have suggested that overnight returns play an important role in the volatility of asset returns (Wang et al., 2015; Jayawardena 
et al., 2016; Zhu et al., 2017; Jayawardena et al., 2020; Kim and Goh, 2024; Masyhuri et al., 2024). 

On the other hand, despite Ahoniemi and Lanne’s (2013) above-mentioned finding regarding realized-volatility estimators, 
they suggested that such estimators are more accurate for individual stocks if they do not incorporate overnight information. 
Some recent studies have also shown that overnight information has no significant effect on volatility prediction, and that it 
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may even result in inferior volatility-prediction performance, as compared to estimators that do not incorporate overnight 
information (Dhaene and Wu, 2020; Lyócsa and Todorova, 2020). 

At present, some Asia-Pacific stock markets take lunch breaks, including in China, Indonesia, Japan, Malaysia, Singapore and 
Thailand. This in effect creates separate morning and afternoon sessions on each trading day. However, during lunch breaks, 
information transmission continues, causing fluctuations, especially in opening prices in afternoon sessions. Wang et al. 
(2015) and Zhu et al. (2017) both found that additional leverage effects captured by negative lunch break returns and 
negative overnight returns played significant roles in forecasting volatility in China’s stock and futures markets, respectively. 

The development of China’s stock market began in 1990 and has been characterized by sharp and frequent fluctuations of 
stock prices. Another of its characteristics has been that bull markets tend to be shorter, and bear markets longer than in 
other stock markets around the world. This has been ascribed to China’s stock market being young and highly speculative 
(Wang et al., 2015). Given such characteristics, understanding the impact of information transmission on stock-price 
fluctuation is especially important to investors and policymakers in China. 

To avoid non-trading-hours issues when making volatility calculations, Takaishi et al. (2012) separately calculated two 
realized volatilities (RVs) for the Tokyo Stock Exchange (TSE), one for the morning session and the other for the afternoon 
session and tested their statistical properties. Jayawardena et al. (2020) found that bridging the TSE’s lunch break with 
information from adjacent markets, i.e., Australia, Hong Kong and China, led to improvements in volatility forecasting. 
Inspired by Takaishi et al. and Jayawardena et al.’s work, this study incorporates the information-content variables of trading 
and non-trading periods – including trading volume, overnight return, and lunch break return – into a heterogeneous 
autoregressive RV (HAR-RV) model. Then, we explore the impacts of the information content of trading and non-trading 
periods on volatility and attempt to achieve the improvements in the forecasting for the realized range-based volatility (RRV) 
of the China Securities Index 300 (CSI 300). 

Additionally, due to the above-mentioned lunch breaks in China’s stock market, we calculate separate RRVs for the morning 
and afternoon sessions of the CSI 300 and examine their relative usefulness in forecasting the RRV of the next trading day. 
The HAR-RV model, first proposed by Corsi (2009), is a simple approximate long-memory dynamics model of RV, and has 
achieved excellent forecasting performance, along with valuable economic implications. Our work extends it into an HAR-
RRV model. 

RRV, as proposed by Christensen and Podolskij (2007), has proven more accurate than traditional measures of RV. More 
recently, Christensen and Podolskij (2012) proposed realized range-based multi-power variation (RMV) and showed how it 
could be used both to estimate ex-post quadratic return variation and to make jump-robust inferences about integrated 
variance. However, the same authors suggested that realized range-based tri-power variance (RTV) was not only a more 
robust estimator of integrated variance than RMV, but also the most efficient estimator so far devised. Thus, we adopted 
RTV as the regressor in the HAR-RRV model. 

This paper makes the following contributions. First, it examines whether information- content variables from trading and 
non-trading periods, including trading volume, overnight return, and lunch break return, have an important influence in the 
volatility of asset returns of China’s stock market. Second, it differs from Jayawardena et al.’s (2020), which bridged non-
trading periods by using intraday data from related markets and instead incorporates the RRVs of two trading sessions 
separated by a lunch break into the novel HAR-RRV model. To the best of our knowledge, our paper is the first to incorporate 
morning- and afternoon-session RRVs into a HAR model aimed at improving the forecasting of volatility in China’s stock 
market. 

In light of that primary aim, based on in-sample estimation results, we adjust and assess out-of-sample forecasting accuracy 
and performance, with the subsidiary aim of arriving at a forecasting model that is not only simpler, but also more accurate. 
The success of that effort allows us to demonstrate that, in the case of the CSI 300, the RRVs of morning sessions do play a 
significant role in the RRVs of the subsequent trading days. 

Numerous studies have explored overnight or lunch break information content’s impact on RV,1 but little attention has thus 
far been paid to the parallel impact of the existence of morning and afternoon sessions that lunch breaks imply. This paper 
therefore complements the literature on the impacts of information from both trading and non-trading periods on RRV. 
Moreover, our empirical results do not support the SIA hypothesis in the case of China’s stock markets. They do, however, 
demonstrate that overnight and lunch break returns do have a significant impact on future RRV. Moreover, having tested 
separate models for forecasting short-term and long-term periods of volatility, we concluded that a single model could be 
used to perform more accurate out-of-sample forecasting at all forecasting time horizons than our original HAR-RRV model. 

 
1See, for example, Ahoniemi and Lanne (2013); Todorova and Souček (2014); Wang et al. (2015); Jayawardena et al. (2016); Zhu et al. (2017); Dhaene 
and Wu (2020); Jayawardena et al. (2020); and Lyócsa and Todorova (2020). 
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The remainder of this paper is organized as follows. Our data sources and methodology are described in Section 2, along 
with the specifications of the HAR-RRV and modified models. Section 3 presents our empirical findings, and the final section, 
our concluding remarks. 

2. DATA AND METHODOLOGY 

2.1. Data 

There are two securities exchanges on the mainland China, the Shanghai Securities Exchange (SHSE) and the Shenzhen 
Securities Exchange (SZSE). They officially open at 9:30 a.m. and close at 3:00 p.m., with a lunch break from 11:30 a.m. to 
1:00 p.m., giving a total of four trading hours per working day. The CSI 300, consisting of the country’s 300 largest and most 
liquid A-share stocks, was created by China Securities Index Co., Ltd. in 2005 to serve as a proxy for the broader Chinese 
economy. 

The CSI 300’s intraday data, daily trading volume, overnight returns, and lunch break returns were collected from the iFinD 
database. Our empirical data for the sample period from April 11, 2005, to December 31, 2019, thereby provides 48 data 
periods of 5-minute duration within a single trading day, for a total of 3584 trading days. We felt that the CSI300 was a good 
case for exploring the impact of information transmission on stock markets, because of the more noise trader in Chinese 
stock markets. 

2.2. Realized Volatility Measures 

RV, firstly proposed by Andersen and Bollerslev (1998), is an assessment of variation in returns for an asset that uses high-
frequency intraday data within a defined period. It can be divided into two components, a continuous-volatility component 
and a jump component, both of which influence stock prices. Prior studies have suggested that RVs’ jump components would 
be of little help in predicting future RVs (Andersen et al., 2007). In response, Christensen and Podolskij (2007) replaced each 
squared intra-day return with the high-low range for the same period, to create a novel and more efficient estimator, RRV. 
Based on their results, they argued that intraday range-based estimation of volatility was a more accurate and efficient 
method of predicting volatility. 

In this paper, we use intraday data from the CSI 300 to measure daily RRV and predict future RRV. Following Christensen and 
Podolskij (2006, 2007), the basis for our analysis is an equidistant grid, tj=j/n, j=1,…,n, where n is the sampling frequency. The 
intraday range is computed as 

St,j = Max ( ph
 – pl 

 ),  for j = 1,2,…, n                            (1) 

where ph (pl) is the highest (lowest) price during a given 5-minute period. Thus, we have a total of 48 observations of p per trading 
day. 

Following the measures of realized range-based estimation of integrated variance used by Christensen and Podolskij 
(2006, 2012), we RRV and RTV as 

𝑅𝑅𝑉𝑡
𝑏 =

1

𝜆2

∑ (𝑠𝑡,𝑗)2𝑛
𝑗=1                                                        (2) 

𝑅𝑇𝑉𝑡 =
𝑛

𝑛−2
(

1

𝜆2/3
)3 ∑ (𝑠𝑡,𝑗)2/3(𝑠𝑡,𝑗−1)2/3𝑛

𝑗=3 (𝑠𝑡,𝑗−2)2/3                       (3) 

where )1()2/)1((2)2/41(/4 2/ −+−= rrrr

r  . The superscript b appearing in the formula for RRV indicates 

that it will be downward biased in the presence of jumps (Christensen and Podolskij, 2006). 

Christensen and Podolskij (2012) proposed that RTV provides an alternative means of drawing inferences from the 
continuous path component of the quadratic variation. They suggested that the RTV extension is more efficient than its bi-
power equivalent. Accordingly, we consider the purely range-based estimator that is consistent for the quadratic variation 
of the jump diffusion semi-martingale to be: 

𝑅𝑅𝑉𝑡 ≡ 𝜆2𝑅𝑅𝑉𝑡
𝑏 + (1 − 𝜆2)𝑅𝑇𝑉𝑡

𝑝
→ ∫ 𝜎2(𝑡)𝑑𝑡

𝑡

0
+ ∑ 𝜅2(𝑡)0<𝑡𝑗<𝑡                                   (4) 

2.3. Volatility Modelling 

The HAR model, proposed by Corsi (2009), holds that agents with different time horizons perceive, react to, and cause 
different types of volatility components. It also successfully captures the long-memory feature of realized variance for various 
forecasting horizons. Moreover, Christensen and Podolskij (2006) suggested that RRV is more efficient than RV. Thus, this 
paper uses an efficient range-based estimator to describe dynamic volatility in the HAR model. Meanwhile, we adopt RTV as 
the regressor for prediction of RRV. Our HAR-RRV model is therefore specified as 
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𝑅𝑅𝑉𝑡,𝑡+𝐻 = 𝛽0 + 𝛽𝐷𝑅𝑇𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑇𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑇𝑉𝑡−20,𝑡 + 𝜀𝑡,𝑡+𝐻                                   (5) 

where H denotes the prediction horizons. The measures of multi-period realized volatility, comprising RTVt-5,t and RTVt-20,t, 
each represent the arithmetic mean of daily volatilities over the relevant time period. We focus on the prediction of future 
realized volatility using 1-day and 1- to 4-week horizons (i.e., H=1, 5, 10, 15 and 20). 

2.4. Modified HAR Models 

Innovation at the opening of the markets reflects the accumulation of information absorbed during market closure periods 
and is bound to have an important influence on the market during the trading day. Gallo (2001) suggested that overnight 
returns have explanatory power over the squared residuals of intraday returns. More recent studies have further suggested 
that overnight information has predictive power over, and improves the forecasting performance of, future volatility.2 

After the opening of the market, investors’ receipt of new information and resulting investment decisions will be reflected 
in asset prices through trading volumes. The SIA hypothesis holds that the lagged trading volume has not been completely 
assimilated into the prior change in price. Thus, the main implication of the SIA hypothesis is that sequential reactions to 
information make asset-price volatility potentially predictable via trading volume. As pointed out in previous studies, trading 
volume can be regarded as a proxy measure for the unobservable flow of information into the market (Andersen, 1996). 
More recently, Todorova and Souček (2014) concluded that trading volume was an important factor in the volatility-volume 
relationship. 

It is also important to note that some securities exchanges in the Asia-Pacific region with lunch breaks for 1-2 hours, and 
thus also undergo a non-trading period of information transmission during the day. Wang et al. (2015) and Zhu et al. (2017) 
both found that lunch break returns had a large long-term impact on the volatility of stock and futures markets. More 
recently, Jayawardena et al. (2020) demonstrated that taking account of information from neighbouring markets during the 
TSE’s lunch break led to improvements in TSE volatility forecasting. 

Our primary objective is to explore the impact on RV of information transmission during periods of market opening and 
closure, as a means of achieving overall improvement in volatility forecasting. To this end, we propose a refined model that 
could improve the predictability of future realized volatility. After incorporating overnight returns, lagged trading volume, 
and lunch break returns into the HAR-RRV model, as described above, we further propose the following specification, to 
obtain our HAR-RRV-OVL model: 

𝑅𝑅𝑉𝑡,𝑡+𝐻 = 𝛽0 + 𝛽𝐷𝑅𝑇𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑇𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑇𝑉𝑡−20,𝑡 + 𝛽𝑂𝐷𝑂𝑁𝑅𝑡−1,𝑡  

                       +𝛽𝑉𝐷𝑉𝑂𝐿𝑡−1,𝑡 + 𝛽𝐿𝐷𝐿𝐵𝑅𝑡−1,𝑡 + 𝜀𝑡,𝑡+𝐻                                               (6) 

where ONR defines the absolute value of overnight return; VOL defines the logarithm trading volume; LBR defines the 
positive lunch break return, that is equal to max (LBRt-1,t, 0), which measures the leverage effects for news arrival. 

Additionally, due to lunch break effects, Takaishi et al. (2012) calculated two RVs separately, one for the morning session 
and the other for the afternoon session of the TSE. They examined the statistical properties of both by investigating their 
respective standardized returns. Similarly, Jayawardena et al. (2020) decomposed total realized power variation (RPV) into 
morning and afternoon sessions and examined the impact on the predictability of total RPV that resulted from bridging the 
TSE’s overnight period using global market information. Inspired by both these articles, we decomposed CSI 300 RRV into 
morning and afternoon sessions and incorporated these separate RRVs into our HAR-RRV model. Our original specification 
is modified into the HAR-RRV-MA model using the following formula, 

𝑅𝑅𝑉𝑡,𝑡+𝐻 = 𝛽0 + 𝛽𝐷𝑅𝑇𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑇𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑇𝑉𝑡−20,𝑡 + 𝛽𝑀𝑆𝑅𝑅𝑉𝑡−1,𝑡
𝑀𝑆  

                      +𝛽𝐴𝑆𝑅𝑅𝑉𝑡−1,𝑡
𝐴𝑆 + 𝜀𝑡,𝑡+𝐻                                                  (7) 

where RRVMS defines the RRV of morning session; RRVAS defines the RRV of afternoon session. 

3. EMPIRICAL RESULTS 

3.1. In-Sample Results 

Table 1 presents the descriptive statistics of RRV levels for the CSI 300, as well as its overnight returns, trading volumes, lunch 
break returns, and the respective RRVs of its morning and afternoon sessions. Notably, the mean and standard values of RTV 
are smaller than those of RRV. This tends to confirm that, as pointed out by Christensen and Podolskij (2012), the range-
based tri-power extension is more efficient than the bi-power one. In addition, the LB statistics for ONR, VOL, LBR, RRVMS, 

 
2 See, for example, Ahoniemi and Lanne (2013); Todorova and Souček (2014); Wang et al. (2015); Jayawardena et al. (2016); Zhu et al. 
(2017); Jayawardena et al. (2020). 
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and RRVAS have a high degree of serial correlation, indicating that these variables might facilitate the prediction of future 
market volatility. Moreover, the mean and standard values of RRVMS are higher than RRVAS, implying that fluctuation during 
the morning session is bigger than in the afternoon one. This finding is consistent with those of Takaishi et al. (2012) regarding 
the statistical characteristics of TSE stock-price fluctuations. 

Table 1: Descriptive statistics, realized range-based volatility levels for the CSI 300 a
 

Variable 
Statistical Parameter 

Mean S.D. Skew Kurtosis Min. Max. LB(10)
b 

RRV 1.466 2.186 5.526 52.161 0.055 35.289 8973.160 

RTV 0.724 1.143 7.120 84.059 0.044 19.775 10000.747 

ONR 0.422 0.626 5.236 47.803 0.000 8.577 1956.227 

VOL 25.016 0.954 -0.746 4.293 21.789 27.579 31568.741 

LBR 0.012 0.038 23.058 742.200 0.000 1.428 440.212 

RRVMS 0.879 1.392 6.009 57.389 0.025 20.788 6890.989 

RRVAS 0.580 1.032 6.933 80.120 0.001 19.359 5208.651 
aRRV=realized range-based variance; RTV=realized range-based tri-power variation; ONR=absolute value of the overnight return; 
VOL=logarithm trading volume; LBR=positive lunch break return; RRVMS=RRV of the morning session; RRVAS=RRV of the afternoon session; 
S.D.=standard deviation. 
b The critical value of the test statistics for LB(10) was 18.307. 

The in-sample results for the CSI 300 are provided in Table 2, with Panel A providing the results of the HAR-RRV model, and 
Panel B, the results of the HAR-RRV-OVL model. In Panel A, all the estimates of βD, βW and βM are statistically significant at 
least at the 10% level, except for βW for the 2- to 4-week prediction horizon, indicating the existence of highly persistent 
volatility dependence. Moreover, the adjusted R2 ranges from 0.530 for the 1-day horizon to 0.462 for the 4-week horizon, 
and the mean squared error (MSE) ranging from 2.256 to 1.288 across the five prediction horizons. 

Table 2: In-sample estimates for the CSI 300 using the HAR-RRV and HAR-RRV-OVL models
a
 

 

a The table presents adjusted R
2
 and mean squared error (MSE) for 1-day and 1- to 4-week in-sample predictions of RRV for the CSI 300. 

The S.E. values are based upon Newey-West HAC standard errors. The dependent variables for the HAR-RRV and HAR-RRV-OVL models 
for all horizons are standardized realized variance: RRVt,t+H/H. 
b *** indicates significance at the 1% level; ** indicates significance at the 5% level; and * indicates significance at the 10% level. 

Similarly, as shown in Panel B of Table 2, highly persistent volatility dependence is also discernible in the HAR-RRV-OVL 
model. In this table, we focus on the influence of three variables on the volatility forecasting: ONR, VOL, and LBR. Firstly, it 
is worth noting that, in the HAR-RRV-OVL model, the estimates for βOD were positive and statistically significant for all 
prediction horizons at least at the 5% level. Because the ONR represents the absolute value of overnight returns, the 
empirical results show that when important news arrives during the night, it exacerbates volatility, irrespective of whether 
it is good news or bad.  

Variable 

Horizon 
 1 day 1 week 2 weeks 3 weeks 4 weeks 

   Coeff.
b S.E.    Coeff.

b S.E.    Coeff.
b S.E.    Coeff.

b S.E.   Coeff.
b S.E. 

Panel A: HAR-RRV Model (RRVt,t+H=β0+βD RTVt-1,t+βW RTVt-5,t+βM RTVt-20,t+εt,t+H) 

β0 0.274 *** 0.059  0.376  ***   0.084  0.471  ***  0.094  0.536  ***  0.096  0.580  ***  0.095  

βD 0.755 *** 0.107  0.651  ***  0.092  0.480  ***  0.093  0.341  ***   0.077  0.299  ***   0.068  
βW 0.656 *** 0.180  0.346  ** 0.148  0.215    0.181  0.263   0.204  0.279   0.210  

βM 0.236 * 0.135  0.508 *** 0.168  0.680  ***  0.202  0.681  ***  0.229  0.645  ***  0.218  

Adj_R
2
 0.530 0.564 0.502 0.473 0.462 

MSE 2.256 1.468 1.435 1.359 1.288 

Panel B: HAR-RRV-OVL Model (RRVt,t+H=β0+βD RTVt-1,t+βW RTVt-5,t+βM RTVt-20,t+βOD ONRt-1,t+βVD VOLt-1,t+βLD LBRt-1,t+εt,t+H) 

β
0
 1.032  0.721  -0.325   0.121  -1.475   1.487  -2.052   1.708  -2.490   1.791  

βD 0.745 *** 0.101  0.642  *** 0.095  0.460 *** 0.097  0.317  *** 0.080  0.273  *** 0.069  
βW 0.593 *** 0.178  0.312  ** 0.155  0.183   0.184  0.237   0.203  0.256  0.209  

βM 0.227 * 0.127  0.493  *** 0.163  0.651  *** 0.195  0.645  *** 0.221  0.605  *** 0.210  

βOD 0.365 *** 0.096  0.194  *** 0.085  0.175  *** 0.066  0.140  ** 0.058  0.125  ** 0.058  
βVD -0.033  0.029 0.027   0.045 0.077   0.060 0.103   0.069 0.123   0.072 
βLD -2.167 *** 0.626 -1.269  0.833 0.180   1.006 1.175   1.108 1.349   1.173 

Adj_R
2
 0.539 0.568 0.506 0.480 0.470 

MSE 2.209 1.453 1.420 1.342 1.269 
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Additionally, estimates of βVD for all prediction horizons in the HAR-RRV-OVL model were found to be insignificant at 
conventional levels of significance, indicating that the impact on volatility of information transmission during trading periods 
was not particularly important. Our empirical results from this model also do not support the SIA hypothesis, in the case of 
the CSI 300. 

Turning to estimates of βLD in the HAR-RRV-OVL model, it is interesting to note that only the βLD for the 1-day prediction 
horizon was found to be statistically significant (and negative) at the 1% level. The LBR=max (LBRt-1,t, 0), which represents 
positive lunch break returns. These empirical results reveal that good news during the lunch break mitigates volatility at 
shorter prediction horizons, implying a significant role of additional leverage effects captured by positive lunch break returns. 
But on the other hand, good news received during lunch break periods had little impact on volatility at the longer prediction 
horizons. These empirical findings are inconsistent with those of Wang et al. (2015) and Zhu et al. (2017), who claimed a 
significant role in volatility forecasting for additional leverage effects captured by negative lunch break returns and negative 
overnight returns. 

Lastly, it should be pointed out that the explanatory and predictive abilities of our HAR-RRV-OVL model were better than 
those of our HAR-RRV model, as confirmed by the adjusted R2 and MSE terms, which were higher (lower) across all prediction 
horizons in the HAR-RRV-OVL model. 

Table 3 reports in-sample estimation results for the CSI 300 using our HAR-RRV-MA model. Here, it should be noted that the 

estimates for βMS for the 3-week and 4-week prediction horizons using this model were positive and statistically significant 

at the 10% and 5% levels, respectively. This indicated that morning-session RRV had a positive impact on volatility at the 

longer prediction horizons. It is also interesting to note that the estimate for βAS in the HAR-RRV-MA model was positive and 

statistically significant at the 5% level at the 1-day prediction horizon only. This differs sharply from our findings regarding 

βMS and implies that afternoon-session RRV drives up volatility only at the shortest prediction horizon. However, adjusted R2 

(MSE) was also higher (lower) across all prediction horizons in the HAR-RRV-MA model than in the HAR-RRV model. In short, 

the RRVs of trading sessions, whether in the morning or the afternoon, indeed play important roles in volatility for the CSI 

300, that is novel findings of this study, which also is a part of little pay attention in the prior literature. 

Table 3: In-sample estimates for the CSI 300 using the HAR-RRV-MA models a 

 

a The table presents the adjusted R
2
 and mean squared error (MSE) for 1-day and 1- to 4-week in-sample predictions of RRV for the CSI 

300. The S.E. values are based upon Newey-West HAC standard errors. The dependent variables for the HAR-RRV-MA model for all 
horizons are standardized realized variance: RRVt,t+H/H. 
b *** indicates significance at the 1% level; ** indicates significance at the 5% level; and * indicates significance at the 10% level. 

3.2. Out-of-Sample Results 

Although the two modified models discussed above both have lower MSE values than the HAR-RRV base model, this does 

not necessarily mean that the modified models will significantly outperform the base model in out-of-sample forecasting. To 

explore whether this was the case, we conducted a modified Diebold-Mariano (DM) test, as proposed by Harvey et al. (1997). 

The in-sample period ran from April 11, 2005, to December 28, 2018, whilst the out-of-sample period ran from January 2, 

2019 to December 31, 2019. The out-of-sample forecasting method used in this paper is the rolling-window approach, in 

which the sampling window is expressed relative to the forecasting date and automatically shifts forward with the passage 

of time. Table 4 presents the out-of-sample results of the HAR-RRV and modified models, with Panel A reporting their MSEs, 

and Panel B, the t-statistics of the modified DM test. Panel A reveals that MSE was lower in the HAR-RRV-OVL model than in 

the benchmark model only at the 1-day forecasting horizon. However, in the case of the HAR-RRV-MA model, MSE results 

were all lower than in the benchmark model, irrespective of forecasting-horizon length. 

 

Variable 

Horizon 
 1 day 1 week 2 weeks 3 weeks 4 weeks 

   Coeff.
b S.E.    Coeff.

b S.E.    Coeff.
b S.E.    Coeff.

b S.E.   Coeff.
b S.E. 

 HAR-RRV-MA Model (RRVt,t+H=β0+βD RTVt-1,t+βW RTVt-5,t+βM RTVt-20,t+βMS RRVMS
t-1,t+βAS RRVAS

t-1,t+εt,t+H) 

β0 0.245  *** 0.053  0.354  *** 0.077  0.452  *** 0.088  0.516  *** 0.090  0.556  *** 0.089  

βD 0.245   0.229  0.363   0.290  0.246   0.298  0.065   0.249  -0.060   0.201  
βW 0.679  *** 0.188  0.339  ** 0.143  0.209   0.175  0.260   0.197  0.285   0.201  

βM 0.226  * 0.125  0.505  *** 0.161  0.678  *** 0.197  0.678 *** 0.222  0.640  *** 0.208  

βMS 0.197   0.135  0.181   0.126  0.147   0.101  0.159  * 0.086  0.177 ** 0.076  
βAS 0.371  ** 0.162  0.137  0.165  0.111   0.175  0.147   0.152  0.222   0.137  

Adj_R
2
 0.537 0.569 0.505 0.478 0.469 

MSE 2.222 1.451 1.424 1.345 1.269 
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Table 4: Comparison of the Accuracy of the Three Initial Models’ out-of-sample CSI 300 Forecasting Performance 

Horizon HAR-RRV HAR-RRV-OVL HAR-RRV-MA 

Panel A: HAR-RRV 

Model
 a

 

    MSE 

1 day 0.253 0.240 0.248 
1 week 0.198 0.207 0.189 
2 weeks 0.242 0.275 0.234 
3 weeks 0.272 0.324 0.263 
4 weeks 0.291 0.364 0.282 

Panel B:  

Modified DM test
b
 

        t-stat.
c
 

1 day － 1.812 ** 0.337  

1 week － -2.014  2.030 ** 

2 weeks － -1.922  2.077 ** 

3 weeks － -1.909  2.045 ** 

4 weeks － -2.022  1.963 ** 
a The table presents the out-of-sample forecasts for the CSI 300 using 5-minute intraday data covering the period from January 2, 2019 to 
December 31, 2019, with data from April 11, 2005 to December 28, 2018 being used to estimate the HAR-RRV model parameters. The 
dependent variables for all models are standardized realized variance: RRVt,t+H/H, and the table entries represent the mean standard error 
(MSE) for the out-of-sample predictions based upon 1-day and 1- to 4-week out-of-sample RRV prediction horizons. The different columns 
refer to the different HAR-RRV-type models. 
b Modified Diebold-Mariano (DM) test p-values are presented for 1-day and 1- to 4-week out-of-sample RRV predictions. The benchmark 
model for all horizons is the HAR-RRV model. 
c    *** indicates significance at the 1% level; ** indicates significance at the 5% level; and * indicates significance at the 10% level. 

In the modified DM test (Panel B of Table 4), the HAR-RRV model was taken as the benchmark for all forecasting horizons. If 
t-statistics is positive (negative), it indicates that the examined model is more (less) accurate than the benchmark model. 
The Panel B results show that the HAR-RRV-OVL model performed significantly better than the benchmark model, at the 5% 
level, only at the 1-day forecasting horizon. Additionally, except for 1-day forecasting horizon, the HAR-RRV-MA model 
performed significantly better than the benchmark, again at the 5% level, implying that this model indeed improved upon 
overall forecasting performance of future volatility in the CSI 300. Based on the empirical results of this paper, we 
recommend that, to maximize forecasting accuracy, short-term periods of volatility should be forecast using the HAR-RRV-
OVL model, and long-term ones, using the HAR-RRV-MA model. 

3.3. More Accurate and Simplified Volatility-Forecasting Model 

Next, we attempted to simplify our modeling while also improving its volatility-prediction ability. To that end, based on our 
in-sample estimation results, we adjusted the independent variables and re-examined its volatility forecasting for out-of-
sample results. Specifically, the variables that were found to be statistically significant in the case of the in-sample results, 
i.e., ONR, LBR, RRVMS and RRVAS, were incorporated into a simplified version of the HAR-RRV model called the HAR-RRV-X 
model (with “X” referring to any one of ONR, LBR, RRVMS or RRVAS), specified as: 

𝑅𝑅𝑉𝑡,𝑡+𝐻 = 𝛽0 + 𝛽𝐷𝑅𝑇𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑇𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑇𝑉𝑡−20,𝑡 + 𝛽𝑋𝐷𝑋𝑡−1,𝑡 + 𝜀𝑡,𝑡+𝐻          (8) 

Table 5 presents comparisons among the HAR-RRV and four “X” models’ out-of-sample forecasting accuracy, with Panel A 
reporting the MSE and Panel B reporting the t-statistics of the modified DM test. The former panel shows that the MSE 
results for the HAR-RRV-ONR model were lower than for the benchmark model only at the 1-day and 1-week forecasting 
horizons. This was very different from the HAR-RRV-LBR model, whose MSE results were lower than those of the benchmark 
model at the 2-week, 3-week, and 4-week forecasting horizons. The MSE results of the HAR-RRV-AS model were slightly 
lower than those of the benchmark model at the 3-week and 4-week forecasting horizons. The HAR-RRV-MS model, 
meanwhile, had the lowest MSE results of any model at all forecasting horizons. 
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Table 5: Comparison of the accuracy of the four simplified models’ out-of-sample CSI 300 forecasting performance against 

that of the benchmark model 

 
a The table presents the out-of-sample forecasts for the CSI 300 using 5-minute intraday data covering the period from January 2, 2019 to 
December 31, 2019, with data from April 11, 2005, to December 28, 2018 being used to estimate the HAR-RRV model parameters. The 
dependent variables for all models are standardized realized variance: RRVt,t+H/H, and the table entries represent the mean standard error 
(MSE) for the out-of-sample predictions based upon 1-day and 1- to 4-week out-of-sample RRV prediction horizons. The different columns 
refer to the different HAR-RRV-type models. 
b Modified Diebold-Mariano (DM) test p-values are presented for 1-day and 1- to 4-week out-of-sample RRV predictions. The benchmark 
model for all horizons is the HAR-RRV model. 
c *** indicates significance at the 1% level; ** indicates significance at the 5% level; and * indicates significance at the 10% level. 

Turning now to Panel B, the HAR-RRV-ONR model’s forecasting performance was significantly better than the benchmark 
model (at the 5% level) only at the 1-week horizon. The HAR-RRV-LBR model, on the other hand, significantly outperformed 
the benchmark model (at the 1% level) at the 2-week, 3-week, and 4-week forecasting horizons; and the HAR-RRV-MS model 
significantly outperformed the benchmark (at the 5% level or better) at all forecasting horizons. However, the HAR-RRV-AS 
model insignificantly outperformed the benchmark model at all forecasting horizons. 

This study has demonstrated that morning-session RRV does play a significant role in RRV for the next trading day of the CSI 
300. This suggests that the information content of morning sessions is more important than that of afternoon ones. A 
possible explanation is that information that arrives during the night is accorded more importance by traders than 
information that arrives during the day, and this is also reflected in more intense levels of morning-session RRV (see Table 
1). In short, the HAR-RRV-MS model not only was found to be more accurate than the HAR-RRV base model, but also it was 
a simplified volatility-forecasting model. 

4. CONCLUSIONS 

Focusing on the RRV impacts of 1) information during trading and non-trading periods, and 2) differences between morning 
and afternoon sessions, this paper complements prior literature that has linked the RRVs of half-day trading sessions 
separated by formal lunch breaks to overall RRV and incorporated its findings into improved HAR models for forecasting 
volatility in the CSI 300. 

This study has three key findings. First, it demonstrated that the SIA hypothesis is not supported in the CSI 300; instead, 

absolute overnight returns and positive lunch break returns were both found to play significant roles in volatility, and 

therefore potentially in the forecasting of volatility. These results hold for both in-sample and out-of-sample forecasting. 

Second, its empirical results imply that the respective RRVs of morning and afternoon sessions have important influence over 

longer-term volatility in the CSI 300 – implying that our HAR-RRV-MA model achieved our aim of improving the forecasting 

of future volatility at longer forecasting horizons (i.e., 1 week or more), while our HAR-RRV-OVL model achieved our parallel 

aim with regard to shorter ones (i.e., less than 1 week). Thus, thirdly, to avoid the need for using two different models for 

different forecasting horizons, this study proposed a simplified volatility-forecasting model that, in the event, proved the 

most accurate. Specifically, the HAR-RRV-MS model significantly outperformed the benchmark HAR-RRV model in terms of 

forecasting accuracy in the out-of-sample results at all forecasting horizons. In sum, our findings indicate that the HAR-RRV-

MS model can improve the accuracy of predictions of RRV. 
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